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We introduce the concept of limit set associated to a cellular automaton (CA)
and a shift invariant probability measure. This is a subshift whose forbidden
blocks are exactly those, whose probabilities tend to zero as time tends to
infinity. We compare this probabilistic concept of limit set with the concepts of
attractors, both in topological and measure-theoretic sense. We also compare
this notion with that of topological limit set in different dynamical situations.
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1. INTRODUCTION

In the time evolution of many cellular automata one can observe homoge-
neous regions with certain simple structure separated by walls or defects
which present different structure. These defects move in an apparently
random manner, and disappear on collisions, so that neighboring homoge-
neous regions merge. When the CA starts in a random configuration, the
frequency of defects steadily decreases and homogeneous regions grow in
size. The dynamics of this type has been observed, e.g., in the elementary
CA with rules 18, 184, 62, 54 (Boccara et al.(5)). Many computer simula-
tions have been performed confirming this dynamics and estimating how
fast the defects disappear (Grassberger(11)). In ref. 18 we have described
this phenomenon using the Besicovitch pseudometric on the configuration
space. In the present paper we adopt a probabilistic approach using the
space of Borel probability measures.
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Intuitively, the system behaves as if approaching an attractor. This
point of view has been adopted by Hanson and Crutchfield, (12) who
describe the structure of homogeneous regions by regular languages. These
regular languages in turn determine sofic subshifts, which are invariant for
the CA in question. Defects can be viewed as words of minimal length not
belonging to the language of the subshift. If the subshift is of finite type,
this yields a finite number of types of defects. In the general case the
number of type of defects is infinite.

When the CA starts in a random configuration, the probability of each
defect steadily decreases to zero. This can be expressed by a topological
condition in the space of Borel probability measures. The iterates of the
given initial probability distribution + approach the subspace of measures
concentrated on the invariant subshift representing homogeneous regions.
We call the smallest subshift with this property the +-limit set. The forbidden
blocks of this subshift are exactly those, whose probability tends to zero as
time tends to infinity. Usually we assume that the initial probability measure
+ is Bernoulli: letters at all positions are independent identically distributed
random variables. Many results, however, can be obtained for much larger
classes of measures such as Gibbs measures and Markov measures.

We show that if 7 is a topological attractor or a +-attractor in the
sense of Hurley, (13, 14) then the +-limit set is a subset of 7. In particular, the
+-limit set is a subset of the omega limit set. In the surjective case and when
initial measures have full support we give several topological conditions,
which imply that the +-limit set is actually equal to the omega limit set: if
there exist equicontinuity points, if the CA is topologically transitive and
right or left permutative.

The subshifts corresponding to homogeneous regions, are usually
neither attractors nor +-attractors and we conjecture that they are +-limit
sets. This happens, e.g., in ``Just gliders'' CA of Milnor, (23) in which left
gliders and right gliders disappear on collisions. If the initial probabilities
of left and right gliders are equal, the homogenous configuration without
gliders is the +-limit set, but it is not a +-attractor. We have shown this
kind of behaviour in a different setting in ref. 18 for both ``Just gliders'' and
184 rules.

While we are still not able to show a similar behaviour for the elemen-
tary CA rule 18, we construct a simpler example of this type, which can be
fully understood. The example implements as a CA a stochastic model
studied by Erdo� s and Ney(8) and Adelman(1) (see also Lind(19)). Here the
defects perform independent random walks with independent increments,
and disappear on collisions. We show that for any Bernoulli measure +, the
+-limit set is the homogenous configuration without defects. The result of
Adelman implies that the +-limit set is not a +-attractor.
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2. DEFINITIONS AND BACKGROUND

For a compact metric space X denote by B(X ) the system of its Borel
sets, i.e., the smallest _-field containing the open sets. Let M(X ) be the set
of Borel probability measures defined on B(X ). The point measure $x of
a point x # X is given by $x(U )=0 if x � U and $x(U )=1 if x # U. The
Prohorov distance between two measures +, & is given by

dM(+, &)=inf[=>0 : \U # B(X ), +(U )�&(B=(U ))

+= 7&(U )�+(B=(U ))+=]

where B=(U )=[x # X : d(x, U )<=] and d( } , } ) is the metric in X. With
the Prohorov metric, the space M(X ) of Borel probability measures is a
compact metric space with the topology of weak convergence. Since for
the point measures we have dM($x , $y)=d(x, y), X can be viewed as a
subspace of M(X ).

The (topological) support supp(+) of a measure + # M(X ) is the (well
defined) smallest closed set with measure 1. In this paper we consider
mainly measures + which have full support, that is, for every non empty
open set U, +(U )>0. If Y�X is a closed set, the space M(Y ) can be
viewed as a subspace of M(X ) and + # M(Y ) iff supp(+)�Y.

A dynamical system is a couple (X, F ), where X is a compact metric
space and F: X � X is a continuous mapping. If + # M(X ) then F+ is a
measure in M(X ) defined by F+(U )=+(F &1(U )) for every Borel set U.
The map F thus extends to a map F: M(X ) � M(X ), which is continuous,
so (M(X ), F ) is also a dynamical system. If F+=+, we say that + is
F-invariant. An F-invariant measure + is F-ergodic, if for every F-invariant
set Y�X (i.e., F(Y )�Y ) either +(Y )=0 or +(Y )=1. The F-invariant
measure + is mixing if for any A, B # B(X ) we have limn � � +(A & F &n(B))
=+(A) +(B). If + is mixing for F then it is ergodic. We also say that + is
n-mixing if for any A0 ,..., An&1 # B(X ) we have

lim
m1 ,..., mn&1 � �

+(A0 & F &m1A1 & } } } & F &mn&1An&1)=+(A0) } } } } } +(An&1)

For a finite alphabet A denote by |A| its size, by A*=�n # N An the set
of words over A, by AN the set of one-way infinite sequences of letters from
A and AZ the set of two-way infinite sequences of letters from A. The
length of a word u=u0 } } } un&1 # An is denoted by |u|=n. The word of
zero length is denoted by *. u C=v means that u is a subword of v, i.e.,
there exists k such that vk+i=ui for all i<|u|. The subword of u starting
at position i and ending at position j is denoted by u[i, j] .
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The distance of two points x, y # AN is

d(x, y)=2&n where n=min[i # N : xi{ yi ]

With this metric AN is a compact metric space which is totally disconnected
and perfect. The cylinder [u]m=[x # AN : x[m, m+n&1]=u] of a word
u # An is a clopen (closed and open) set. In particular, [*]m=AN. The
cylinders form a base of the topology of AN, so a Borel probability measure
is determined by its value on cylinders.

In the space AZ of doubly infinite sequences we have the metric

d(x, y)=2&n where n=min[i�0 : x i{ yi or x&i{ y&i ]

The cylinder [u]l=[x # AZ : x[l, l+n&1]=u] of a word u # An starting at
position l # Z is a clopen set. On point measures, dM is equivalent to d.

In this paper we consider mainly two classes of mixing measures in
M(AZ): Bernoulli measures and probability measures with complete connec-
tions. A Bernoulli measure on AZ is determined by a positive probability
vector ?=(?(a))a # A , where ?(a)>0 and �a # A ?(a)=1. The probability of
a cylinder is the product of the probabilities of its letters. If u # An, then for
every k,

+([u]k)=?(u0) ?(u1) } } } ?(un&1)

A measure + # M(AZ) has complete connections if it satisfies: (1) \u # A*,
\w # AN, \j # Z the limit +(u | w)=limm � � +([u] j | [w&m } } } w0] j&(m+1))
exists and is positive, and (2) if for k�0 we define

#k=sup {} +(a | w)
+(a | w$)

&1 } : a # A, w, w$ # AN, w[0, k]=w$[0, k]=
then #k � 0 as k � �. We will use the following property of measures with
complete connections: for any m�0 there is a constant c>0 such that
+(u | w)�c for any u # Am and w # AN.

A cellular automaton (CA) is a dynamical system (AZ, F ) given by

F(x) i= f (xi&r(F ) ,..., x i+r(F ))

where r(F )�0 is the radius and f: A2r(F )+1 � A is a local rule. A cellular
automaton is continuous and commutes with the shift _: AZ � AZ defined
by _(x) i=xi+1 .

A subshift is any subset 7�AZ, which is _-invariant (i.e., _(7)�7),
and closed. The language

L(7)=[u # A* : _x # 7, u C=x]
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of a subshift 7�AZ, is the set of words occurring in the points of 7. Define
the set of defects (minimal excluded words) of a subshift by

u # D(7) iff u # A*"L(7) and v # L(7) for all proper subwords v of u

A subshift 7 is of finite type, if D(7) is finite. In this case there exists a
positive integer p called order, such that for x # AZ,

x # 7 iff \i # Z, x[i, i+ p&1] # L(7)

If 7�AZ is a subshift, M(7)�M(AZ) is the subspace of measures concen-
trated on 7. We have

+ # M(7) � +(7)=1 � \k # Z, \u � L(7), +([u]k)=0

Since CA commute with the shift it is natural to suppose that the
initial probability measure is _-invariant. Every Bernoulli measure is
_-invariant. If + is _-invariant and F is a CA, then F+ is also _-invariant.
If + is a _-invariant measure, then for every u # A* and every k, l # Z,
+([u]k)=+([u] l), so we write +([u]) omitting the subscript. We say that
a point x # AZ is generic for a _-invariant measure +, if for every u # A*, the
density of u in x is exactly +([u]), i.e., if,

lim
n � �

*[i # [&n, n] : x[i, i+|u|&1]=u]
2n+1

=+([u])

If + is ergodic, the set of +-generic points has +-measure 1. For a
_-invariant measure + we have + # M(7) if and only if +([u])=0 for all
u # D(7). Similarly, a sequence of measures converges to M(7) if and only
if the measure of every defect converges to zero.

3. ATTRACTORS AND LIMIT SETS

We recall the definitions and some properties of attractors and +-attrac-
tors from Hurley.(13, 14) We apply it, however only to subshifts, and introduce
a third, weaker concept of +-limit set.

Definition 1. Let (AZ, F ) be a CA, 7�AZ an F-invariant subshift
and + a _-invariant probability measure on AZ. Then

1. 7 is an attractor if there exists an F-invariant clopen set V�AZ

with

7=4(V )= ,
n�0

F n(V )
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2. 7 is +-attractor, if

+[x # AZ : lim
n � �

d(F n(x), 7)=0]>0

3. 7=4+(F ) is the +-limit of F, if for every u # A*,

u � L(7) � lim
n � �

F n+([u]0)=0

Clearly, the +-limit 4+(F ) is a well defined subshift. The omega limit set is
the largest attractor

4(F )= ,
n�0

F n(AZ)

If 7 is an attractor, it has a clopen invariant neighbourhood, V$7, whose
forward images tend to 7, so all the configurations from V are attracted
to 7. This means that defects appear only finitely many times in every
central interval [&k, k]. Since +(V ) is positive, every attractor is +-attractor
(see Hurley(13)). If + is _-ergodic, then [x # AZ : limn � � d(F n(x), 7)=0] is
_-invariant, so its measure is either 0 or 1. Thus a subshift which is
+-attractor attracts actually a set of full measure. On the other hand, the
+-limit set does not need to attract any configuration at all. In every con-
figuration, the probability (or density) of defects decreases to zero as time
goes to infinity, but the defects keep visiting any interval [&k, k].

Proposition 1. If (AZ, F ) is a CA, + # M(AZ) a _-ergodic measure,
and 7�AZ a +-attractor, then 4+(F )�7. In particular, 4+(F )�4(F ).

Proof. By the assumption +[x # AZ : \=, _n0 , \n�n0 , d(F n(x), 7)<=]
>0. Since this is a _-invariant set, its measure is 1. Given u � L(7) with |u|=
2m+1, then for ==2&m we have +[x # AZ : _n0 , \n�n0 , d(F n(x), 7)<
2&m]=1 and +[x # AZ : _n0 , \n�n0 , F n(x)[&m, m]{u]=1. Thus for every
$>0 there exists n0 such that for every n�n0 ,

F n+([u]&m)=+[x # AZ : F n(x)[&m, m]=u]<$

so limn � � F n+([u]&m)=0. K

The proof of the next proposition is left to the reader.

Proposition 2. If limn � � F n+=& in M(X ), then 4+(F )=supp(&).
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The following examples show that the inclusions between the three
concepts of attraction are strict. We denote by 2=[0, 1] and for a # A we
denote by a� the shift periodic point in AZ, all coordinates of which are a.

Example 1. A=2, F(x) i=xi&1xix i+1 .

The subshift [0�] is an attractor, since the cylinder V=[0]0=
[x : x0=0] is invariant and |(V )=[0�]. The omega limit is larger,

4(F )=[x # 2Z : \n>0, 10n1 C=3 x]

so it contains another fixed point 1�. For every _-invariant measure +,
such that supp(+){[1�], we have 4+(F )=[0�]{4(F ).

Example 2. A=2, F(x) i=xi+1 xi+2 , for x # AZ, i # Z.

The fixed point 0� is not an attractor, so the only attractor is 4(F )
which is the same as in Example 1. Nevertheless, for any _-ergodic measure +,
(in particular for every Bernoulli measure), [0�] is a +-attractor, so
4+(F )=[0�]{4(F ).

In the next example we consider some random walks and Markov
chains. Let I be a countable set of states. A sequence (Xi ) i�0 of I-valued
random variables is a stationary Markov chain, if

Pr[Xn+1= j | Xn=i, Xn&1=in&1 ,..., X0=i0]=Pr[Xn+1= j | Xn=i]=Pij

Pn
ij=�k # I Pn&1

ik Pkj is the probability of transition from i to j in n steps.
A Markov chain is aperiodic and irreducible, if there exists n0 such that for
every i, j # I, for all n�n0 , Pn

ij>0. A state i # I is recurrent, if Pr[_n>0,
Xn=i | X0=i]=1 and this happens iff �n�0 Pn

ii=�. A Zn-valued
Markov chain is a random walk, if (Xn+1&Xn)n�0 are independent, iden-
tically distributed random variables. An irreducible and aperiodic random
walk in Z and Z2 is recurrent iff E(Xn+1&Xn)=0 (see Karlin (15)).

Example 3 (Just Gliders). A=[&1, 0, 1], for x # AZ, i # Z,

F(x) i=1 if xi&1=1, xi{&1, xi+1{&1

F(x) i=&1 if xi+1=&1, xi{1, x i&1{1

F(x) i=0 otherwise

Thus 1 is a particle (glider) which moves to the right with velocity 1
and &1 moves to the left with velocity &1. When two particles cross, they
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both annihilate. Gilman(10) shows, that if + is a Bernoulli measure and
+([1])>+([&1]), then 2Z is a +-attractor. For any Bernoulli measure with
+([1])=+([&1]), we have shown in ref. 18, that [0�] is not a +-attractor
but the probability of defects decreases to zero, i.e., 4+(F )=[0�].

Example 4 (Random Walk). A=2_2_2,

F(x, y, z) i=(xi&2 , y i+2 , 1)

if zi+1=1, xi+1+ y i+1=0, z i } (xi+ yi )=0,

zi&1 } (xi&1+ y i&1)=0

or zi&1=1, xi&1+ y i&1=1, z i } (xi+ yi+1)=0,

zi+1 } (xi+1+ y i+1+1)=0

F(x, y, z) i=(xi&2 , y i+2 , 0) otherwise

All additions are modulo 2. Denote by ?i : AZ � 2Z, i=1, 2, 3, the projec-
tions in each coordinate, so ?1 : (AZ, F ) � (2Z, _&2), ?2 : (AZ, F ) � (2Z, _2)
are factor maps. Ones in the third coordinate act as particles which move
to the left when the sum (modulo 2) of the first two coordinates is zero,
and to the right when this sum is one. When two particles intend to cross
or to go to the same site, they are both annihilated. Suppose that + is a
Bernoulli measure on AZ. Since, for i=1, 2, ?i + are Bernoulli measures
which are invariant for both _2 and _&2 respectively, every particle per-
forms a random walk with independent increments from [&1, 1] until it
collides with a neighboring particle. In general, these random walks are not
symmetric, the probability of going to the right may differ from the prob-
ability of going to the left. Nevertheless, the distance of two neighboring
particles performs a symmetric random walk with absorbing states 0 and &1
(which represent annihilation)��unless one of these particles annihilates with
its other neighbour. Thus the ``Random walk'' CA implements the behaviour
which has been observed and conjectured in elementary CA with rules 18,
54, etc.

Proposition 3. Let (AZ, F ) be the ``Random walk'' CA from
Example 4. For any Bernoulli measure +, 4+(F )=2Z_2Z_[0�], but
4+(F ) is not a +-attractor.

Proof. Using generic points we show that the density of particles
decreases to some limit. If the limit were positive, there would exist an
invariant measure with this density of particles, but the probability of
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annihilation would still be positive. Define a particle of a state (x, y, z) # AZ

as a finite or infinite sequence of integers t=(t0 ,..., tN&1) or t=(t0 , t1 ,...)
respectively, such that

?3(F n(x, y, z))tn
=1, |tn+1&tn |=1

whenever tn and tn+1 are defined. Also, if a particle t=(t0 ,..., tN&1) cannot
be prolonged, we say that it is annihilated at time N. We have

tn+1=tn&1 if xtn+2n+ ytn&2n=0

tn+1=tn+1 if xtn+2n+ ytn&2n=1

Since (tn+2n)n is increasing and (tn&2n)n is decreasing, (xtn+2n+ ytn&2n)n

is a sequence of independent random variables, so (tn)n is a random walk.
If (tn)n�N is a finite sequence, this is a truncated random walk, which ends
when a particle is annihilated. If t, s are neighboring particles and, say,
tn<sn , then xtn+2n+ ytn&2n , xsn+2n+ ysn&2n are independent. Thus un=
sn&tn is a truncated random walk in [&1, 0, 1,...]. The length of u is the
minimum of the lengths of s and t. If these lengths are not equal, one of
the particles is annihilated with another particle. If the lengths of s and t
are equal and finite, the two particles annihilate when u enters one of the
absorbing states &1 or 0. Moreover u is symmetric:

Prob[un+1&un=2]=Prob[un+1&un=&2] for un>0

We show now that the density of particles tends to zero. Denote by
Y=[(x, y, z) # AZ : z0=1] the cylinder of configurations containing a par-
ticle at site 0. Let (x, y, z) be a generic point for a Bernoulli measure
+ # M(AZ) and put

an= lim
k � �

*[i # [&k, k] : _iF n(x, y, z) # Y ]
2k+1

=F n+(Y )

Since F n(x, y, z) is a generic point for F n+, and the number of particles at
time n+1 in interval [&k, k] is at most the number of particles in interval
[&k&1, k+1] at time n, we get

an+1� lim
k � �

*[i # [&k&1, k+1] : _ iF n(x, y, z) # Y ]
2k+1

=an
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so the limit limn � � an=a exists. Suppose that a>0. Since M(AZ) is a
compact space, there exists an increasing sequence (ni ) i # N for which the
Cesa� ro mean of + converges, i.e., there exists a limit

&= lim
i � �

1
n i

:
ni&1

j=0

F j+

Then & is _-invariant, F&=&, &(Y )=a, and the projections ?1&, ?2& are
Bernoulli. Since &(Y )>0, there exists j>0 such that &[(x, y, z) # AZ : z0=
zj=1]>0. If the particles at sites 0 and j were the only particles in the
configuration, there would exist time p>0, such that these particles would
annihilate by time p with some positive probability =. This is an event
which depends only on the central cylinder of length 2p+1. Using a
generic point for the measure &, we get F p&(Y )�&(Y )&= and this is a
contradiction. Thus we have proved limn � � F n+(Y )=a=0, so for every
u # A* which contains a particle, limn � � F n+([u])=0, and 4+(F )=2Z_
2Z_[0�]. As proved by Adelman, (1) the site zero is visited by a particle
with probability one and it follows that it is visited infinitely many times
with probability one. This means that 4+(F ) is not a +-attractor. K

4. LIMIT SETS AND DYNAMICS OF CA

In this section we state some relations between the +-limit set, the limit
set and the dynamics of one-dimensional cellular automata. We state the
equality 4+(F )=4(F ) in different dynamical situations and for different
shift invariant probability measures of full topological support.

We follow the classification of one dimensional cellular automata
which is based on the existence of equicontinuity points.(17) We will state
this classification after recalling some concepts.

Let F: AZ � AZ be a CA. It is said to be (topologically) transitive if for
any non empty open sets U and V in AZ there exists n>0 such that
F &n(U ) & V{<. It is (topologically) mixing if F &n(U ) & V{< for all
sufficiently large n. Mixing implies transitivity and every transitive system
is surjective.

The CA F has equicontinuous points if and only if there exist words
called markers, that is: there is w # A* such that |w|=2a+r(F ) for some
a # N, and

\j # Z, \x, y # [w]&a+ j , \n�0, F n(x)[ j, j+r(F )&1]=F n( y)[ j, j+r(F )&1]

Put E(F ) to be the set of equicontinuous points. In words, a marker is a
block in A2a+r(F ) for some a # N such that whenever it appears in position
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j&a of a point of x # AZ, then it determines the value of F n(x)[ j, j+r(F )&1]

for any n # N independently of the values in coordinates outside the
marker. A proof of this fact can be found in Ku# rka.(17) In the multiplication
CA of Example 1, every point except the shift periodic point 1� is equi-
continuous, and 0 is a marker: if x0=0, then F n(x)0=0 for all n�0. In
contrast, the CA from Example 2 does not have equicontinuous points.

A cellular automaton is sensitive if and only if it does not have
equicontinuous points, and every transitive CA is sensitive (see Ku# rka(17)

for a proof ). Among sensitive CA we distinguish positive expansive ones,
that is, for any x, y # AZ, x{ y, there is n # N such that the iterates
F n(x)[&r(F ), r(F )&1]{F n( y)[&r(F ), r(F )&1] . The dynamics of positively expan-
sive CA has been completely described in refs. 6, 3, and 24. The CA from
Example 2 is sensitive but not positively expansive, A classical example of
positively expansive CA is

Example 5 (Addition CA). A=2, F(x)i=xi&1+xi+xi+1 mod 2,
for x # AZ, i # Z.

Thus we classify CA in four classes: (1) E(F )=AZ, (2) E(F ){< but
it is not equal to AZ, (3) F is sensitive to initial conditions but it is not
positively expansive and (4) F is positively expansive.

Fundamental classes of maps in symbolic dynamics are the family of
right permutative CA and the family of left permutative CA. A CA (AZ, F )
is right permutative if and only if

\u # A 2r(F ), \a, b # A, a{b, F(ua){F(ub)

Analogously we can define left permutative property.
We begin our study with CA having equicontinuous points. Let us

remark that if F is equicontinuous (E(F )=AZ) then for any shift invariant
probability measure + # M(AZ) of full topological support there are
p, T # N such that(4)

lim
N � �

1
N

:
N&1

i=0

F i+=
1
p

:
p&1

i=0

F i (F T+)

Therefore we get the equality 4(F )=4+(F ). In fact, if u � 4+(F ) then
(1�p) � p&1

i=0 F i (F T+[u]0)=0, which implies that u � 4(F ).
Given a word w # A* and two non-negative integers s�m, we define

(as in ref. 4) the set
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D(w, m, s)= .
&s

i=&m

.
m

j=s

([w] i&|w|+1 & [w] j )

Thus D(w, m, s) consists of all configurations which contain at least one
occurrence of w finishing at [&m, &s] and also at least one occurrence
of w starting at [s, m]. Clearly D(w, m, s)�D(w, m+1, s). If F has equi-
continuous points and w is a marker for F, then there are integers
t(w, m, s) and p(w, m, s) such that any point x # D(w, m, s) satisfies
F t(w, m, s)+ip(w, m, s)(x)[&s, s]=F t(w, m, s)(x)[&s, s] for any i�0. The following
lemma strengthens this property for surjective cellular automata. A related
result can be found in ref. 4.

Lemma 1. Let (AZ, F ) be a surjective CA having equicontinuous
points and let w # A* be a marker for F. Then any _-periodic point x # AZ

containing w satisfies F iM(x)=x for any i�0 and some M�0.

Proof. By hypothesis we have that 4(F )=AZ. Let x be a _-periodic
point containing w. Let T be the period of x and v=x[0, T&1] , that is,
xi+ jT=vi for j # Z and i # [0,..., T&1]. Moreover, we assume v has the
subword w. We put C=[vvv]&T . Since F is surjective, the uniform Bernoulli
measure of AZ is invariant with respect to F (and has full support). Therefore,
by using Poincare� recurrence Theorem we deduce the existence of y # C
and M>0 such that F M( y) # C. Finally, since v contains the marker w we
get that

F n(x)[0, T&1]=F n( y)[0, T&1]

Therefore F M(x)=x because x is _-periodic. K

Proposition 4. Let (AZ, F ) be a surjective CA having equicon-
tinuous points and let + # M(AZ) be a _-ergodic probability measure of full
topological support. Then 4+(F )=4(F ).

Proof. Since F is surjective we have AZ=4(F ). Let u be a word in
the limit set of F and let us suppose that u is not in L(4+(F )), that is,
limn � � F n+([u]0)=0. Put s=|u|. First we show the following assertion.

Claim. For m�s there is M�1 such that F &iM([u]0) & D(w, m, s)
=[u]0 & D(w, m, s) for any i�0, where w # A* is any fixed marker for F.
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Fix j�0. If y # F & j ([u]0) & D(w, m, s) then there is a _-periodic point
x # F & j ([u]0) & D(w, m, s) such that

F k(x)[0, |u| &1]=F k( y)[0, |u| &1]

for any k�0 and whose period is less than 2m+1+2 |w|. By Lemma 1,
there is M such that F kM(x)=x for any k�0. Therefore,

y # F &(( j mod M )+kM )([u]0) & D(w, m, s)

for any k�0. Since there is a finite number of _-periodic points of period
2m+1+2 |w| in D(w, m, s) we can assume that M is a constant indepen-
dent of the periodic point. Then we have that for any j�0

F & j ([u]0) & D(w, m, s)�F &(( j mod M )+kM )([u]0) & D(w, m, s)

This inclusion proves the claim.
Since + is ergodic for the shift and has full topological support we get

that

lim
m � �

+(D(w, m, s))=+ \ .
m # N

D(w, m, s)+=1

and

F n+([u]0)= lim
m � �

+(F &n([u]0) & D(w, m, s))

(the limit in m is non decreasing).
Fix =>0 and m�s. By our assumption, if i is large enough then

+(F &iM([u]0) & D(w, m, s))�=

Therefore, using the claim we deduce that +([u]0 & D(w, m, s))�=. Taking
first the limit when m tends to infinity and then the limit when = tends to
zero we conclude that +([u]0)=0. This is a contradiction because + has
full topological support and u # L(4(F ))=A*. K

The dynamics of sensitive cellular automata (class (3)) is quite
unknown. In what follows we consider the class of transitive CA, therefore
surjective and sensitive, which are left or right permutative. Also we con-
sider natural measures in statistical mechanics: Gibbs measures, Markov
measures and Bernoulli measures.
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Proposition 5. Let (AZ, F ) be a right (resp. left) permutative CA
and let + # M(AZ) be a shift invariant probability measure with complete
connections. If + has full topological support then 4+(F )=4(F ).

Proof. There exists m # Z such that G=F b _m is one-sided transitive,
i.e., G(x) i= g(xi } } } xi+r(G)) for some local rule g: Ar(G)+1 � A and some
integer r(G)>0. Since + is shift invariant and F is right permutative, G is
also right-permutative and Gn+=F n+ for all n # N. Thus we can assume
that F is one-sided transitive. Let u # A*. Then, for n>1

F n+([u]0)=+(F &n([u]0))

= :
a # k(u)

:
v # p(a, n&1)

:
w # c(v, u, n)

+([vw]0)

= :
a # k(u)

:
v # p(a, n&1)

:
w # c(v, u, n)

+([w]0 | [v]&|v|) +([v]0)

where

k(u)=[a # Ar : F &1([u]0) & [a]0{<]

p(a, n&1)=[v # Anr : F &(n&1)([a]0) & [v]0{<]

c(v, u, n)=[w # A |u| : F n(vw)=u]

Since + has complete connections there is a positive constant c, indepen-
dent of w, v and the length of v such that +([w]0 | [v]&|v|)�c. Therefore,

F n+([u]0)� :
a # k(u)

:
v # p(a, n&1)

:
w # c(v, u, n)

c } +([v]0)

�c } :
a # k(u)

:
v # p(a, n&1)

+([v]0) } *c(v, u, n)

�c } :
a # k(u)

F n&1+([a]0)�0

In the last series of inequalities we use the fact that *c(v, u, n)�1 for any
right permutative CA. We conclude that if u � L(4+(F )) then for any
a # k(u),

lim
n � �

F n+([u]0)=0 and lim
n � �

F n+([a]0)=0

Finally, since F is transitive, we get that for any a # Ar,
limn � � F n+([a]0)=0. This is a contradiction since �a # Ar F n+([a]0)=1
for any n # N. K
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The last proposition can be strengthened for some classes of positively
expansive linear CA (which in particular are right and left permutative).

Proposition 6. Let (A, +) be a finite Abelian group such that
|A|= p for some prime number p. Let (AZ, F ) be the addition cellular
automaton defined for each x # AZ and i # Z by

F(x) i= :
r(F )

j=0

:j (xi+ j )

where [:j : j=0,..., r(F )] is a family of commuting isomorphisms of (A, +).
If + # M(AZ) is a shift invariant probability measure r(F )-mixing with
respect to the shift and with full topological support then 4+(F )=4(F ).

Proof. Set r(F )=r. Let u be a word in the limit set of F. If u is not
in 4+(F ) then limn � � F n+([u]0)=0. A simple computation yields to the
following formula: for x # AZ,

F m(x)0= :
m

ir=0

} } } :
i2

i1=0
\i2

i1+p
} } } \m

ir +p
: i1

0 b } } } b : ir&1&ir
r&1 b :m&ir

r (x�r
j=1 j(ij+1&ij)

)

where ir+1=m and ( a
b)p is the binomial coefficient modulo p. Using Lucas'

formula (see ref. 20) for combinatorial numbers we deduce that for any
m�0 and x # AZ, F pm

(x)0=�r
j=0 xjp m . Then for m large enough we get

F p m+([u]0)= :
v0 ,..., vr&1 # A |u|

+([v0]0 & [v1]0 & } } } & [vr]rpm)

where for each v0 ,..., vr&1 # A |u| the word vr is the unique word in A |u| such
that F pm

(v0w0v1w1 } } } wr&1vr)=u for any w0 ,..., wr&1 # A pm&|u|. Then, by
taking the limit when m tends to � and using the r-mixing property of +
we get

:
v0 ,..., vr&1 # A|u|

+([v0]0) } +([v1]0) } } } } } +([vr]0)=0

which contradicts the fact that + has full topological support. K

To finish let us observe that since the measures + we are considering
are invariant for the shift map then for any m # Z we have 4+(F )=
4+(F b _m). Then all of our results apply to all the CA considered in this
paper composed with powers of the shift.
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